欢迎光临车载式绿篱机公司!

网站首页 联系我们 站内搜索
此网站可出售,如果有意向可联系 18553715592

企业新闻 News

您当前的位置:首页 | 企业新闻 | 人工智能技术的障碍

人工智能技术的障碍

发布时间:2018-03-13      关键词: 人工智能技术   浏览量:571

深度学习是人工智能领域目前最受关注的发展成果,利用包含数百万个分层构建的模拟“神经元”的大型神经网络,它正在帮助我们提升分类与预测的准确性。其中,最常见的网络被称为卷积神经网络(简称CNN)与递归神经网络(简称RNN)。这些神经网络能够通过数据训练,并配合反向传播算法实现“学习”。   

这一技术已经取得了一系列进展,但需要注意的是,其中还有最关键的一步,就是如何将人工智能方法与问题和可用数据匹配起来。由于这些系统是“训练”而来,而非编程而来的,因此其学习过程往往需要大量标记数据才能准确执行复杂的任务。然而,获取大规模数据集往往相当困难,即使能够实现,标记工作也需要巨大的人力投入。

此外,我们很难判断深度学习训练所使用的数学模型要如何才能达成特定的预测、推荐或决策要求。这就是“黑匣子”问题,即使模型能够支持实现既定的目标,但效用恐怕也将十分有限。考虑到这一点,用户有时候的确需要了解这背后的运作原理,以及为何在特定情况下某些因素的权重要比其它因素更高等等。然而,这并不容易。生成式对抗网络是一种半监督学习的方法,通过两套相互对抗的神经网络,不断完善各自对同一概念的理解。以识别鸟类图像为例,一套网络负责正确分辨鸟类图像,而另一套网络则负责生成与鸟类非常相似的其它图像对前者进行迷惑。当两套网络的表现最终趋于稳定时,其各自对鸟类图像也拥有了更为准确的认知。

Copyright 1994-至今 车载式绿篱机生产制造厂家 版权所有

网站地图

地址:中国

销售热线:18553715592